Controlled Wetting Properties through Heterogeneous Surfaces Containing Two-level Nanofeatures

نویسندگان

  • Pranav P. Dubey
  • Quang N. Pham
  • Hyunjin Cho
  • Yongsung Kim
  • Yoonjin Won
چکیده

Addressing the direct control of surface wettability has been a significant challenge for a variety of applications from self-cleaning surfaces to phase-change applications. Surface wettability has been traditionally modulated by installing surface nanostructures or changing their chemistry. Among numerous nanofabrication efforts, the chemical oxidation method is considered a promising approach because it allows cost-effective, quick, and direct control of the morphologies and chemical compositions of the grown nanofeatures. Despite the wide applicability of the surface oxidation method, the precise control of wetting behaviors through the growth of nanostructures has yet to be addressed. Here, we investigate the wetting characteristics of heterogeneous surfaces that contain two-level features (i.e., nanograsses and nanoflowers) with different petal shapes and structural chemistry. The difference in growth rates between nanograsses and nanoflowers creates a time-evolving morphology that can be classified by grass-dominated or flower-dominated regimes, which induces a wide range of water contact angles from 120 to 20°. The following study systematically quantifies the structural details and chemistry of nanostructures associated with their wetting characteristics. This investigation of heterogeneous surfaces will pave the way for selective growth of copper nanostructures and thus a direct control of surface wetting properties for use in future copper-based thermal applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled switching of the wetting behavior of biomimetic surfaces with hydrogel-supported nanostructures†

An important feature of biological systems is their response to external stimuli with subsequent changes in properties and function. The ability to ‘‘engineer’’ adaptiveness into next-generation materials is becoming a key requirement and challenge in chemistry, materials science and engineering. Recently we have described new hybrid nano/microstructures capable of dynamic actuation by a hydrog...

متن کامل

Wettability studies of topologically distinct titanium surfaces.

Biomedical implants made of titanium-based materials are expected to have certain essential features including high bone-to-implant contact and optimum osteointegration, which are often influenced by the surface topography and physicochemical properties of titanium surfaces. The surface structure in the nanoscale regime is presumed to alter/facilitate the protein binding, cell adhesion and prol...

متن کامل

The Effect of Nanoscale Structure on Interfacial Energy

Interfaces are ubiquitous in nature. From solidification fronts to the surfaces of biological cells, interfacial properties determine the interactions between a solid and a liquid. Interfaces, specifically liquid-solid interfaces, play important roles in many fields of science. In the field of biology, interfaces are fundamental in determining cell-cell interactions, protein folding behavior an...

متن کامل

Asymmetric wetting of patterned surfaces composed of intrinsically hysteretic materials.

Wetting of chemically heterogeneous surfaces is modeled using a phase field theory. We focus on a chemically heterogeneous surface composed of squares of one component material embedded in another. Unlike previous studies where the component materials were characterized only by an equilibrium contact angle, in this paper each of the component materials is constitutively allowed to exhibit hyste...

متن کامل

Computer simulations of the wetting properties of neon on heterogeneous surfaces

We use the grand canonical Monte Carlo method to study the nature of wetting transitions on a variety of heterogeneous surfaces. The model system we explore, Ne adsorption on Mg, is one for which a prewetting transition was found in our previous simulations. We find that the first order transition present on the flat surface is absent from the rough surface. Nevertheless, the resulting isotherm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017